
Communicators and Windows and
Threads, Oh My!
James Dinan
Extreme Scale Software Pathfinding Team

Celebrating 25 Years of MPI
September 25, 2017

Legal Notices and Disclaimers
Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn
more at intel.com, or from the OEM or retailer.

No computer system can be absolutely secure.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect
actual performance. Consult other sources of information to evaluate performance as you consider your purchase. For more complete information
about performance and benchmark results, visit http://www.intel.com/performance.

Intel, the Intel logo, Xeon and Xeon Phi and others are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and
brands may be claimed as the property of others.

© 2017 Intel Corporation.

2

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to
Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not
guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel.
Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not
specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference
Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

3

Let’s be honest about MPI_THREAD_MULTIPLE

Historically, performance has
looked like a bit like this

Data is old and improvements are
being made, but still …

§ Threads interfere in MPI
semantics (ordering, etc.)

§ MPI is unaware of threads

§ Tools are unaware of threads 10-1

100

101

102

103

104

4 16 64 256 1K 4K 16K
B

a
n

d
w

id
th

 (
M

iB
/s

e
c
)

ST Processes

P=1
P=2
P=4
P=8

4 16 64 256 1K 4K 16K

Message Size (B)

MT Processes

P=1, T=1
P=1, T=2
P=1, T=4
P=1, T=8

4 16 64 256 1K 4K 16K

Message Size (B)

MT Processes

P=1, T=1
P=1, T=2
P=1, T=4
P=1, T=8

Node: 2x 12-core 2.7 GHz Intel® Xeon® E5-2697
Fabric: Mellanox* InfiniBand* FDR, 2-level fat-tree
Intel® MPI Library v4.1.3, no modifications

[SC14] “Enabling efficient multithreaded MPI communication through a
library-based implementation of MPI endpoints, ” Sridharan et al.

MPI_THREAD_SINGLE MPI_THREAD_MULTIPLE

4

Multithreaded Processes, Coming Soon to A NIC Near You!

NICs provisioned to support multiple cores

§ Must use multiple TX/RX contexts to fully
utilize NIC’s TX and RX capabilities

Current solution: Run multiple processes

§ Restricts application’s choice of threads per
process, limits thread scaling

Desired: One process drives multiple contexts

§ Ideally, map threads to contexts

§ Emergent networking stack support

§ Challenge: Process-level ordering, sync.
– Point-to-point, RMA, etc.

...

...
160	TX
160	RX

8	SDMA

Intel(R)	Omni-Path	100	HFI

100	Gb/s
Link

Send/Recv Send/Recv

5

Communicator Info to the Rescue?

Ratified for next version of MPI specification:

§ Allow info hints to convey assertions about behavior of application

§ Four new info keys for MPI communicators
– mpi_assert_no_any_tag – TX/RX: Hash on tag
– mpi_assert_no_any_source – RX: Hash on source (TX can always hash on dest.)
– mpi_assert_exact_length – Optimize large message protocols
– mpi_assert_allow_overtaking – TX: Hash on tag/source

Enable single process to distribute (hash) traffic across TX/RX contexts

§ But, at the expense of disabling certain MPI semantics

§ TX/RX contexts are still shared, not privatized to threads

6

Typical Mapping of MPI_THREAD_MULTIPLE

Inefficient, because multiple threads
drive single TX/RX context pair T T T

MPI	Process

...

...
160	TX
160	RX

8	SDMA

Intel(R)	Omni-Path	100	HFI

100	Gb/s
Link

T

7

Better …

Processes use multiple TX contexts

MPI 3.1

§ Hash on recipient ...

...
160	TX
160	RX

8	SDMA

Intel(R)	Omni-Path	100	HFI

100	Gb/s
Link

T T T

MPI	Process

T

8

Even Better …

Process uses multiple TX/RX contexts

MPI 3.1

§ Communicator per thread

MPI 3.next

§ Threads share communicator with
info assertions (e.g. no wildcards)

...

...
160	TX
160	RX

8	SDMA

Intel(R)	Omni-Path	100	HFI

100	Gb/s
Link

T T T

MPI	Process

T

9

Best …

Assignment of threads to TX/RX ctx.

§ Eliminate synchronization overheads

§ Improve latency, small message
throughput

Communicator per thread

§ Plus an info hint that the
communicator is private to the thread

Endpoints (!!)

...

...
160	TX
160	RX

8	SDMA

Intel(R)	Omni-Path	100	HFI

100	Gb/s
Link

T T T

MPI	Process

T

10

History of MPI Endpoints

Static endpoints, proposed 8-28-2011 by Marc Snir

MPI_Comm_create_endpoints, proposed 7-12-2013 by Jim Dinan

§ Proposal draft: https://github.com/mpi-forum/mpi-issues/issues/56

Publications:

§ [EuroMPI ‘13] Enabling MPI Interoperability Through Flexible Communication Endpoints.
James Dinan, Pavan Balaji, David Goodell, Douglas Miller, Marc Snir, and Rajeev Thakur.

§ [IJHPCA ’14] Enabling Communication Concurrency Through Flexible MPI Endpoints.
James Dinan, Ryan E. Grant, Pavan Balaji, David Goodell, Douglas Miller, Marc Snir, and
Rajeev Thakur.

§ [SC ’14] Enabling Efficient Multithreaded MPI Communication Through a Library-Based
Implementation of MPI Endpoints. Srinivas Sridharan, James Dinan, and Dhiraj Kalamkar.

Rank

T T T

MPI	Process

RankRank

11

MPI Endpoints Proposal

A rank is an abstract entity representing an MPI communication “endpoint”

§ Set of resources that supports the execution of MPI operations

Proposal: Fork new ranks from existing ranks in parent communicator to enable many-to-one mapping

§ MPI_Comm_create_endpoints(MPI_Comm parent, int num_ep, MPI_Info info, MPI_Comm ep_comm[])

§ Endpoint ranks behave like MPI processes (progress, matching, ordering rules)

Rank

T T T

Endpoints	Communicator

MPI	Process

RankRankRank

T T T

Conventional	Communicator

MPI	Process

Rank

T T T

MPI	Process

Rank

T T T

MPI	Process

RankRank

0

MPI Process 0

21 3

MPI Process 1

4 5

MPI Process 2

6

P P P P P P P P P

User’s
MPI Job

Proxy
MPI Job

12

EP-Lib: MPI Endpoints Library

Spawn background MPI job (may oversubscribe), implement endpoint ranks using MPI processes

Endpoints library forwards commands from user job to proxy job

§ Proxy process performs MPI operation on behalf of user endpoint rank

§ POSIX Shared memory coordination between user and proxy job

T T T T T T T T T

Endpoints Lib.

13

Impact on Throughput

Single threaded (ST), multithreaded (MT), and endpoints cases

§ Two nodes, increase number of process or threads

Uni-directional BW at 64B messages, 8 cores (ST = 1029 (100%); MT = 27 (2.6%); EP = 742 (72%) MiB/sec)

10-1

100

101

102

103

104

4 16 64 256 1K 4K 16K

B
a
n
d
w

id
th

 (
M

iB
/s

e
c)

ST Processes

P=1
P=2
P=4
P=8

4 16 64 256 1K 4K 16K

Message Size (B)

MT Processes

P=1, T=1
P=1, T=2
P=1, T=4
P=1, T=8

4 16 64 256 1K 4K 16K

Endpoints

P=1, T=1, EP=1
P=1, T=2, EP=2
P=1, T=4, EP=4
P=1, T=8, EP=8

Node: 2x 12-core 2.7 GHz Intel® Xeon® E5-2697
Fabric: Mellanox* InfiniBand* FDR, 2-level fat-tree
Intel® MPI Library v4.1.3, no modifications

14

Can Communicator Info Help?

MPI_TAG_ORDERING_KEY (integer) = value

The low value bits of tags used in point-to-point
communication on the given communicator
represent an ordering key at the receiver (e.g.
receiver thread ID). When this info key is
provided, tags are of the form key + (tag << value).
The full tag must be less than or equal to the value
of MPI_TAG_UB. Point-to-point communication
operations whose tag contain the same ordering
key obey the nonovertaking semantic. Messages
with different ordering keys have no relative
ordering.

Message Tag Key

15

What About Threads and RMA?

Synchronization is at the window level

Active target is reasonable, collective on process

Passive target synchronization is hard
– Lock/unlock, flush, sync

– Source of thread interference
– Easy to violate sync. rules

Solution is multiple overlapping windows

– Provides isolation
– Still easy (easier?) to violate sync. rules

Rank 0 Rank 1

Public
Copy

Private
Copy

16

Wrap-Up

There are semantic challenges associated with
MPI_THREAD_MULTIPLE that implementation
cleverness can’t remedy

§ Info assertions might provide duct tape solution
for point-to-point

§ There are still challenges to interoperability of
RMA and other interfaces with threads

Endpoints are the best thing since sliced bread

§ Solve mapping problems without restricting
MPI semantics

MPI
Endpoints

Credit: https://priceonomics.com/the-invention-of-sliced-bread/

